西安安泰仪器维修中心
西安安泰仪器维修中心

全国服务咨询热线 400-8765512

西安安泰仪器维修中心

您现在的位置:网站首页 >

信号发生器有哪些类型呢?

发布时间:2021-03-16             西安安泰仪器维修中心    180
  
  信号发生器在广义上分成混合信号发生器( 任意波形发生器和任意波形/ 函数发生器) 和逻辑信号源( 脉冲或码型发生器),满足了全系列信号生成需求。每种信号发生器都有独特的优势,或多或少地适合某种特定应用。
  混合信号发生器是为输出具有模拟特点的波形而设计的,包括正弦波和三角波等模拟波,以及表现出每个实际环境信号都包括的圆形和不理想的“方”波。在通用混合信号发生器中,您可以控制幅度、频率和相位及DC 偏置和上升时间和下降时间;您可以创建过冲等畸变;还可以增加边沿抖动、调制等等。
  真正的数字信号发生器必需驱动数字系统。其输出是二进制脉冲流 - 专用数字信号发生器不能生成正弦波或三角波。数字信号发生器的功能是为满足计算机总线需求和类似应用而优化的。这些功能包括加快码型开发速度的软件工具,也可能包括为匹配各种逻辑系列而设计的探头之类的硬件工具。如前所述,从函数发生器到任意信号发生器到码型发生器,当前几乎所有高性能信号发生器都基于数字结构,支持灵活的编程能力和杰出的精度。
  模拟信号发生器和混合信号发生器
  模拟信号发生器和混合信号发生器的类型——任意波形发生器
  从历史上看,生成各种波形的任务一直使用单独的专用信号发生器完成,从超纯音频正弦波发生器到几GHz 的RF 信号发生器。尽管有许多商用解决方案,但用户通常必须根据手边的项目定制设计或改动信号发生器。设计仪器质量的信号发生器非常困难,当然设计辅助测试设备会占用项目的宝贵时间。
  幸运的是,数字采样技术和信号处理技术给我们带来了一个解决方案,可以使用一台仪器 - 任意波形发生器满足几乎任何类型的信号发生需求。任意波形发生器可以分成任意波形/ 函数发生器 (AFG) 和任意波形发生器 (AWG)。
  任意波形/ 函数发生器 (AFG)
  任意波形/ 函数发生器 (AFG) 满足了广泛的激励需求;事实上,它是当前业内流行的信号发生器结构。一般来说,这一仪器提供的波形变化要少于AWG 同等仪器,但具有杰出的稳定性及能够快速响应频率变化。如果DUT 要求典型的正弦波和方波( 及其它),并能够在两个频率之间几乎即时开关,那么任意波形/ 函数发生器(AFG) 提供了适当的工具。另一个特点是AFG 的成本低,对不要求AWG 通用性的应用极具吸引力。
  AFG 的许多功能与AWG 相同,但AFG 设计成更加专用的仪器。AFG 提供了许多独特优势:它生成稳定的标准形状的波形,特别是最重要的正弦波和方波,而且精确、捷变。捷变是指能够迅速干净地从一个频率转到另一个频率。
  大多数AFG 提供了用户熟悉的下述波形的某个子集:
  正弦波
  方波
  三角波
  扫描
  脉冲
  锯齿波
  调制
  半正弦波
  当然AWG 也能提供这些波形,但当前AFG 是为改善输出信号的相位、频率和幅度控制而设计的。此外,许多AFG 提供了从内部来源或外部来源调制信号的方式,这对某些类型的标准一致性测试至关重要。

  过去,AFG 使用模拟振荡器和信号调节创建输出信号。最新的AFG 依赖直接数字合成(DDS) 技术确定样点从存储器中输出时钟的速率。


  图16. 任意波形/ 函数发生器的结构( 简图)。
  DDS 技术使用一个时钟频率生成仪器范围内的任何频率,来合成波形。图16 以简化形式概括了基于DDS的AFG 结构。
  在相位累加器电路中,Delta (D) 相位寄存器接收来自频率控制器的指令,表示输出信号将在每个连续周期中前进的相位增量。在现代高性能AFG 中,相位分辨率可能会低到1/230,即约为1/1,000,000,000。相位累加器的输出作为AFG 波形存储器部分的时钟使用。仪器操作几乎与AWG 相同,但有一个明显例外是波形存储器一般只包含部分基本信号,如正弦波和方波。模拟输出电路基本上是一个固定频率的低通滤波器,保证只有感兴趣的编程频率( 没有时钟人工信号) 离开AFG 输出。
  为了解相位累加器怎样创建频率,想象一下控制器把值1 发送到30 位D 相位寄存器。相位累加器D 输出寄存器将在每个周期中前进360 ÷ 230,因为360 度代表着仪器输出波形的一个完整周期。因此,D 相位寄存器值1 在AFG 范围内生成频率最低的波形,要求整整2D 增量,创建一个周期。电路将保持在这一频率,直到D 相位寄存器加载一个新值。

  大于1 的值将更迅速地前进通过360 度,生成更高的输出频率 ( 某些AFG 采用不同的方法:它们跳过某些样点,从而更快地阅读存储器,提高输出频率)。唯一的变化是相位值由频率控制器提供,根本不需要改变主时钟频率。此外,它允许波形从波形周期内的任何点开始。


  图17. ( 左) 表示正弦波的一串样点;( 右) 重建的正弦波。
  例如,假设必需生成一个从周期正向部分峰值开始的正弦波。基本数学运算告诉我们,这个峰值发生在90度。因此:
  230 个增量 = 360° ; 且90° = 360° ÷ 4; 那么90° = 230 ÷ 4在相位累加器收到一个等于(230 ÷ 4) 的值时,它会提示波形存储器从包含正弦波正峰值电压的位置启动。
  典型的AFG 在存储器预编程部分存储多个标准波形。从整体上看,正弦波和方波是许多测试应用使用最广泛的应用。任意波形保存在存储器中用户编程的部分。
  可以以与传统AWG 相同的灵活性定义波形。但是,DDS 结构不支持存储器分段和波形排序。这些高级功能留给了高性能AWG。
  DDS 结构提供了杰出的频率捷变性,可以简便地在空中对频率变化和相位变化编程,这特别适合任何类型的FM DUT,如无线和卫星系统器件。如果特定AFG的频率范围足够大,那么它为测试FSK 和跳频电话技术( 如GSM) 提供了理想的信号发生器。
  AFG 不能象AWG 那样创建想得到的几乎任何波形,但AFG 能够生成世界各地实验室、维修设施和设计部门中最常用的测试信号。此外,它提供了杰出的频率捷变性。重要的是,AFG 通常是完成工作最经济的方式。
  任意波形发生器 (AWG)

  不管您在磁盘驱动器检定中需要由精确的Lorentzian脉冲定形的数据流,还是需要复调制RF 信号测试基于GSM 或基于CDMA 的手机,任意波形发生器 (AWG)都可以生成您想得到的任何波形。您可以使用各种方法,从数学公式到“画出”波形,创建所需的输出。


  图18. 任意波形发生器的结构( 简图)
  从本质上看,任意波形发生器 (AWG) 是一种完善的播放系统,它根据存储的数字数据提供波形,这些数字数据描述了AC 信号不断变化的电压电平。它是一种方框图看起来很简单的工具。为解释AWG 概念,我们举一个大家熟悉的例子,比如实时读出存储数据的唱片机( 在AWG 中是自己的波形存储器;在唱片机中是唱片本身)。它们都输出一个模拟信号或波形。为理解AWG,首先必需掌握数字采样的广义概念。顾名思义,数字采样是使用样点或数据点定义一个信号,这些样点或数据点沿着波形的斜率表示一串电压测量。通过使用示波器等仪器实际测量波形,或使用图形或数学技术,可以确定这些样点。图17 ( 左) 说明了一串样点。尽管曲线使其得间隔似乎发生变化,但所有这些点都以统一的时间间隔采样。在AWG 中,采样的值以二进制形式存储在快速随机存取存储器(RAM) 中。

  通过使用存储的信息,可以读回存储器位置,通过数模转换器(DAC) 输入数据点,在任何时间重建信号( 下图)。图17 ( 右) 说明了结果。注意AWG 的输出电路在样点之间滤波,以连接各个点,创建干净的不间断的波形形状。DUT 不会把这些点“看作”离散的点,而是看作连续的模拟波形。

       图18 是实现这些操作的AWG 简化的方框图。

  AWG提供了几乎任何其它仪器都不能匹配的通用性。由于其能够生成可以想到的任何波形,因此AWG 支持从汽车防抱死制动系统模拟到无线网络极限测试的各种应用。


  图19. 高性能混合信号发生器:泰克AWG7000 系列任意波形发生器。


  混合信号发生器系统和控制功能
  与作为完整测量解决方案激励单元的角色一样,混合信号发生器的控制和子系统采用专门设计,加快了各种波形类型的开发速度,提供了拥有完整保真度的波形。
  最基本的、经常处理的信号参数都有自己专用的前面板控制功能。比较复杂的操作及需要频次较低的操作则通过仪器显示屏上的菜单进入。
  Level Control ( 电平控制) 负责设置输出信号的幅度和偏置电平。在图19 所示的信号发生器中,前面板上的专用电平控制功能可以简便地设置幅度和偏置值,而不必依赖多级菜单。

  Timing Control ( 定时控制) 通过控制采样率,设置输出信号的频率。这里,基于硬件的专用控制功能也简化了基本水平参数的设置。


  图20. AWG 用户界面,其中显示了用来选择菜单的设置栏。
  注意,上面的任何参数都不控制仪器生成的实际波形。这一功能位于编辑/ 控制屏幕上的菜单中。触摸面板或鼠标选择感兴趣的视图,其可能会提供控制功能,在图形用户界面中定义顺序或数字输出设置,如图20所示。在启动这样一个页面后,您只需使用数字键盘和/ 或通用滚动旋钮填空即可。
       以上有关先后发生器分类知识由西安安泰信号发生器维修中心整理发布,更多有关信号发生器维修案例欢迎访问安泰仪器维修网(www.agitekservice.com
上一篇:信号发生器波形基础知识科普
下一篇:信号发生器基础知识科普